Mössbauer Studies on Bis(4-substituted pyridine)iron-(II) Thiocyanate

HO-HSIANG WEI and YUNG-SHENG HO

Department of Chemistry, Tamkang College of Arts and Sciences, Tamsui, Taipei, Taiwan

Received January 13, 1979

In previous works we have shown that some 3or 4-substituted pyridine complexes of high-spin iron(II) display two quadrupole doublets of Mössbauer spectra at low temperature [1-3]. This preliminary evidence has never been interpreted. The present work has undertaken a more rigorous investigation of the temperature-dependent Mössbauer studies for the complexes of $FeL_2(NCS)_2$ (L = py, 4-CH₃-py, 4-Cl-py, 4-CH₃CO-py and $4-C_6H_5$ -py). The results suggest that two states of iron ions are present in the different configuration in the iron(II) complexes.

Experimental

The complexes $FeL_2(NCS)_2$, with the exception of $Fe(4-C_6H_5-py)_2(NCS)_2$ and $Fe(4-CH_3CO-py)_2$ -(NCS)₂, were prepared by the thermal decomposition of corresponding $FeL_4(NCS)_2$ under a nitrogen stream [1, 4]. Fe(4-R-py)₄(NCS)₂, (R = H, CH₃, Cl) were prepared by the method of Golding, et al. [5]. $Fe(4-C_6H_5-py)_2(NCS)_2$ and $Fe(4-CH_3CO-py)_2$ -(NCS)₂ were prepared as follows: FeSO₄·7H₂O-

(0.016 mol) in 10 ml of water was added to NH₄-(NCS)(0.032 mol) in 3 ml of water, then 0.032 mol of ligands in 10 ml of ethanol were added and the products were collected and washed with three 5 ml portions of ethanol-water solution, and dried in vacuo.

Anal. Calcd for $Fe(4-C_6H_5-py)_2(NCS)_2$: Fe, 11.4; C, 59.9; H, 3.74; N, 11.6. Found: Fe, 11.0; C, 59.4; H, 3.80; N, 11.5.

Calcd for Fe(4-CH₃CO-py)₂(NCS)₂: Fe, 13.5;

C, 46.4; H, 3.38; N, 13.5. Found: Fe, 13.1; C, 47.0; H, 3.41; N, 13.2.

Calcd for Fe(4-CH₃-py)₂(NCS)₂: Fe, 15.6; C, 47.0; H, 3.91; N, 15.6. Found: Fe, 15.2; C, 47.2; H, 3.85; N, 15.2.

Calcd for Fe(4-Cl-py)₂(NCS)₂: Fe, 14.0; C, 36.1; H, 2.00; N, 14.0. Found: Fe, 13.9; C, 36.7; H, 1.82; N, 14.2.

Calcd for $Fe(py)_2(NCS)_2$: Fe, 14.7; C, 37.9; H, 2.63; N, 14.7. Found: Fe, 14.9; C, 37.4; H, 2.70; N. 14.8.

IR spectra of the complexes were taken at 298 K with a Beckman Model $4250(4000-200 \text{ cm}^{-1})$ grating spectrophotometer. Magnetic moments were measured by using a room temperature Gouy balance Newport MK.II.

Mössbauer spectra in the temperature range 78-298 K were measured with an ASA-600 Mössbauer spectrometer. The source ⁵⁷Co(Rh) was used and kept at room temperature. The isomer shifts were defined using sodium nitroprusside as standard.

Results and Discussion

The magnetic moments (μ_{eff}) and the most important IR absorption bands are given in Table I.

All the values of μ_{eff} at room temperature for the complexes of iron(II) range from 5.04 to 5.60 B.M. and are consistent with the magnetic moments expected for distorted octahedral high-spin iron(II).

 $Fe(py)_4(NCS)_2$ and $Fe(4-CH_3-py)_4(NCS)_2$ are known to have trans-octahedral configuration about the iron atom [6, 7], *i.e.* nitrogen atom of -NCSis trans to iron atom. The crystal structures of Fe(4-

TABLE I. Magnetic moments and the Most Important IR Data (cm⁻¹) for the Complexes.^a

Compound	μ _{eff} (B.M.) (298 K)	ν _{CN}	$\nu_{\rm CS}$	ν _{NCS}	^µ Fe–NCS 262
Fe(py) ₂ (NCS) ₂	5.39	2090 (vs) 2050 (sh)	780	470 490	
Fe(4-CH ₃ -py) ₂ (NCS) ₂	5.29	2090 (vs) 2060 (sh)	783	470 482 490	269
$Fe(4-C_6H_5-py)_2(NCS)_2$	5.28	2093 (vs) 2060 (sh)	-	470 478	256
Fe(4-CH ₃ CO-py) ₂ (NCS) ₂	5.04	2095 (vs) 2050 (sh)	784	472 485	265
Fe(4-Cl-py) ₂ (NCS) ₂	5.10	2085 (vs) 2065 (sh)	780	468 490	260

^avs: very strong, sh: shoulder.

Compound	Isomer Shifts (mm/sec) ^a			Quadrupol	Quadrupole Splittings (mm/sec) ^b		
	78 K	202 K	298 K	78 K	202 K	298 K	
Fe(py) ₂ (NCS) ₂	1.34	1.26	1.24	3.07	2.91	2.59	
Fe(4-CH ₃ -py) ₂ (NCS) ₂	1.34 1.34	1.28 1.28	1.26 1.25	3.16 1.78	3.06 1.43	2.72 1.09	
Fe(4-Cl-py) ₂ (NCS) ₂	1.30 1.31	1.26 1.27	1.24 1.25	3.12 1.85	2.90 1.62	2.80 1.41	
Fe(4-C ₆ H ₅ -py) ₂ (NCS) ₂	1.34	1.34	1.29	3.16	2.96	2.62	
Fe(4-CH ₃ CO-py) ₂ (NCS) ₂	1.51	1.41	1.36	1.93	1.83	1.73	

TABLE II. Mössbauer Data for the Complexes.

 $a_{\pm 0.02}$ mm/sec. $b_{\pm 0.03}$ mm/sec.

 $R-py)_2(NCS)_2$ are not known. However, from X-ray, IR and Mössbauer studies [1], it seems that $Fe(py)_2$ -(NCS)₂ is isomorphous with $Co(py)_2(NCS)_2$, whose structure is known [8], hence $Fe(py)_2(NCS)_2$ seems an octahedral polymeric structure with bridging NCS ions.

The comparison of IR spectra (as shown in Table I) of Fe(4-R-py)₂(NCS)₂ also suggests the presence of bridging thiocyanate groups since for NCS bridging complexes, it covers a wide range of 2090-2200 cm⁻¹ for CN stretching frequencies [9].

Mössbauer spectra

The Mössbauer parameters are collected in Table II. The isomer shifts for the complexes I.S. = 1.30-1.40 mm/sec are located in the range of expected values for high-spin iron(II) complexes with the electronic configuration $t_{2g}^4 e_g^2$.

The Mössbauer spectra of Fe(4-CH₃-py)₂(NCS)₂ and Fe(4-Cl-py)2(NCS)2 clearly exhibit two doublets quadrupole splittings and same isomer shifts. This implies that two sites of iron atoms exist in the complexes; in addition, the ratio of abundance for the two site irons is near 1:1, and this ratio does not change with temperature. It may be seen from Table II that the quadrupole splittings for the outer doublet of the Fe(4-CH₃-py)₂(NCS)₂ and Fe(4-Cl $py)_2(NCS)_2$ are near to those of structure known $Fe(py)_2(NCS)_2$, so that, one site of iron atom in these two complexes may be taken as trans-configuration of NCS (B-form), i.e. nitrogen atom of NCS is trans bonded to the iron atom. In the other site, the smaller quadrupole splitting of iron atom may be taken as cis-configuration (A-form), i.e. nitrogen atom of NCS is cis-bonded to the iron atom. The configuration could be suggested as shown in Fig. 1,

and the real crystal structure must be determined with

single crystal X-ray study. A detailed discussion will be presented in a future report.

The larger difference in quadrupole splitting values between A-form and B-form configurations may be attributed to the different asymmetric population of the sixth electron of $3d^6$ among the t_{2g} orbitals, with the energy separations of $\delta_{t_{2g}}$ between the $b_{2g}(d_{xy})$ and $e_g(d_{xz}, d_{yz})$. From theoretical treatments of Ingall [10] and Gibbs [11], the crystalfield splitting $\delta_{t_{2g}}$ could be estimated. In addition, a larger quadrupole splitting (above 2 mm/sec) is generally expected for a tetragonal distortion with d_{xy} lowest, while for d_{xz} and d_{yz} lowest the quadrupole splitting is about half the magnitude. On the basis of this model, the S.Q. values of Fe(L)₂(NCS)₂ $(L = py, 4-CH_3, 4-Cl, 4-C_6H_5)$ are much larger and suggest that in each case the orbital ground state is possibly d_{xy} . The obtained values of $\delta_{t_{2g}}$ for Fe(py)₂-(NCS)₂, Fe(4-C₆H₅-py)₂(NCS)₂, B-form Fe(4-Cl-py)₂- $(NCS)_2$ and B-form Fe(4-CH₃-py)₂ $(NCS)_2$ are 460, 320, 450 and 480 cm⁻¹ respectively in the case of dxv lowest and for Fe(4-CH₃CO-py)₂(NCS)₂, A-form $Fe(4-Cl-py)_2(NCS)_2$ and A-form $Fe(4-CH_3-py)_2$ -(NCS)₂ are 430, 310 and 200 cm⁻¹ respectively in the case of d_{xz} , d_{yz} lowest.

References

- 1 M. Takeda and T. Tominaga, Kagaku no Ryoiki (Japan), 23, 1 (1969).
- 2 M. Takeda, T. Tominaga and N. Saito, J. Inorg. Nucl. Chem., 36, 2459 (1974).
- 3 H. H. Wei and L. C. Men, J. Inorg. Nucl. Chem., 40, 221 (1978).
- 4 R. M. Golding, K. F. Mok and J. F. Duncan, Inorg. Chem., 5, 774 (1966).
- 5 T. Tominaga, M. Takeda, T. Morimoto and N. Saito, Bull. Chem. Soc. Japan, 43, 1093 (1970).
- 6 I. Sotofte and S. Rasmussen, Acta Chem. Scand., 21, 2028 (1967).
- 7 C. D. Burbridge and D. M. L. Goodgame, *Inorg. Chim.* Acta, 4, 231 (1970).
- 8 M. A. Porai-Koshits and G. N. Tishchenko, Sov. Phys. Crystallogr., 4, 216 (1960).
- 9 W. A. Baker, JR., and H. M. Bobonich, *Inorg. Chem.*, 3, 1184 (1964).
- 10 R. Ingalls, Phys. Rev., 133 A, 787 (1968).
- 11 T. C. Gibb, J. Chem. Soc. A, 1439 (1968).